
Systolic Array Placement on FPGAs
Hailiang Hu∗, Donghao Fang∗, Wuxi Li†, Bo Yuan‡, Jiang Hu∗§
∗Dept. of Electrical and Computer Engineering, Texas A&M University
§Dept. of Computer Science and Engineering, Texas A&M University

†AMD, Inc. ‡Dept. of Electrical and Computer Engineering, Rutgers University
{hailiang, donghao, jianghu}@tamu.edu; wuxi.li@amd.com; bo.yuan@soe.rutgers.edu

Abstract—Systolic array designs have regained popularity in recent
years, particularly for their applications in accelerating CNN (Convo-
lutional Neural Network) computing in hardware, including on FPGAs.
However, existing FPGA layout techniques are primarily designed for
general-purpose applications and have not fully leveraged the regularity
of systolic arrays to enhance solution quality. This paper presents a
new algorithmic approach for systolic array placement on FPGAs. Our
approach enables 23% − 25% wirelength reduction for CNN circuits
compared to an industrial tool and state-of-the-art academic methods.
Moreover, it usually leads to significantly reduced routing resource utiliza-
tion, accelerated placement runtime and improved timing performance.

Index Terms—Systolic Arrays, Placement, FPGA, CNN

I. INTRODUCTION

Systolic array is a VLSI architecture [1] that enables massively par-
allel datapath computing with a highly regular topology and local data
interconnects. In recent years, systolic arrays have regained popularity
due to their applications in hardware acceleration for CNN (Convo-
lutional Neural Network) computing, such as in Google TPU [2] and
FPGA-based CNN computing acceleration [3]. However, the regular
topology of systolic arrays has rarely been leveraged in automatic
layout tools. In a study [4], it was noted that an FPGA placement
tool overlooked regularity in a systolic array-based CNN design and
the circuit timing could be significantly enhanced by incorporating
regularity-based constraints. The 2D regularity of systolic arrays
was exploited in ASIC (Application-Specific Integrated Circuit) cell
placement [5] and facilitated significant wirelength reduction. The
regularity was also utilized to largely accelerate simulated annealing-
based FPGA placement [6].

In this work, we study systolic array placement on FPGAs. In
particular, we consider 2D systolic arrays, which are the most typical
topology for CNN computing. Compared to ASICs, systolic array
placement on FPGAs is notably more challenging. Since an ASIC
silicon die is generally an open space for placement, a systolic array
can be placed onto it with little restriction. By contrast, an FPGA con-
sists of pre-fabricated elements, such as CLBs (Configurable Logic
Blocks), DSP blocks and RAM blocks, which impose significant hard
constraints on the placement of a systolic array. A typical FPGA
architecture is illustrated in Figure 1. The heterogeneity resulting
from the CLB/DSP/RAM columns makes it very difficult to directly
utilize the regularity of a systolic array, except in a few special cases.

Typically, a systolic array consists of a 2D array of Processing
Elements (PEs), where each PE executes Multiply and Accumulate
(MAC) operations. When placing systolic arrays on FPGAs, the
previous work [6] chose to place the PEs onto CLBs, which are less
efficient for datapath computing compared to DSP blocks. Indeed,
placing systolic array PEs on DSPs is more prevalent [4], [7].
However, DSP columns are normally sparser than CLB columns,
making it more challenging to accommodate a regular array of PEs.

This work is partially supported by NSF CMMI-2038625, CCF-1937396
and CCF-2106725.

Figure 1: A typical FPGA architecture.

Systolic arrays are placed on DSPs in RapidLayout [7] using off-
the-shelf evolutionary algorithm packages without dedicated attention
to the 2D regularity. Also, RapidLayout is geared to solve a special
problem of placing convolutional units, each of which occupies 18
DSPs, rather than typical systolic array placement [4]–[6], where
each PE corresponds to one DSP block. In [4], a greedy floorplan
constraint is enforced for an existing FPGA layout tool to improve
regularity of systolic array placement. State-of-the-art FPGA place-
ment techniques [8]–[11] are general-purpose and do not distinguish
systolic arrays from other designs. They also simultaneously handle
CLBs, DSPs and RAMs. Overall, research on systolic array place-
ment on FPGAs is quite limited and there lacks an efficient approach
for leveraging the regularity of general CNN circuit designs.

In this work, we introduce a new approach to 2D systolic array
placement on FPGAs exploiting the regularity. This approach is
centered around a Region-wise Sweep in Alternating Direction (R-
SAD) algorithm for placement on a single DSP column, which
can simultaneously minimize intra-column wirelength and facilitate
minimum inter-column wirelength. R-SAD achieves near-optimal
solutions compared to ILP (Integer Linear Programming) solving
while being tremendously faster. We also propose a partition enu-
meration and pruning technique, which is integrated with R-SAD
for generating 2D array placement solutions. When used as a pre-
processing for general FPGA placement, our approach usually leads
to improvement on all of wirelength, routing resource utilization,
placement runtime and circuit timing performance for CNN designs.
The main contributions of this work are summarized as follows.

• We develop a linear complexity Region-wise Sweep in Alternat-
ing Direction (R-SAD) algorithm for placement of systolic array
kernels on a single DSP column. R-SAD achieves near-optimal
solution compared to ILP solving and is over 50K× faster.

• A partition enumeration and pruning technique is developed to
utilize R-SAD for 2D array placement, which is integrated with
general FPGA placement for the layout of systolic-array based
CNN circuit designs.

• We demonstrate an improvement of 23% - 25% in half-perimeter
wirelength, 19% - 22% in routing resource utilization, and 3% to
10% less runtime compared to existing industrial and academic
FPGA placement tools.

• Our approach increases the maximum frequency by 1% -3% on
average compared to an existing industrial and academic FPGA
placement tools.

II. SYSTOLIC ARRAY-BASED CNN CIRCUIT

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Global
Buffer

MAC

Register
File

Control

Control
Logic

Network on Chip

Network on Chip

Figure 2: A systolic array-based CNN circuit architecture.
A typical architecture for a systolic array-based CNN circuit can

be seen in Figure 2. The architecture includes a global buffer,
often implemented using SRAM, a 2D array of PEs (Processing
Elements), and control logic beside the PE array. Data communication
is usually handled using a network-on-chip. Each PE consists of a
MAC (Multiply and Accumulate) unit, a register file, and intra-PE
control circuitry. The systolic array, which is the 2D PE array, not
only has a regular topology but also has only local data interconnects.
This means that the data interconnects between PEs are restricted to
their neighbors.

III. HOW TO LEVERAGE THE REGULARITY?

A straightforward approach to leverage the regularity is to retain
the regularity as the 3 × 3 array example shown in Figure 3(a).
However, such an approach has some significant drawbacks:

1) It is often infeasible. The number of DSP columns in an FPGA
is usually less than 10 while the systolic array dimensions of
a CNN circuit can easily reach 16× 16 and beyond. Hence, it
is often impossible to let each systolic array column to occupy
an entire DSP column for keeping the regularity.

2) Even when the number of systolic array columns is no greater
than the number of DSP columns, this approach may result
in inferior solutions due to the fact that the distance between
two neighboring DSP columns is often much larger than the
distance between two neighboring DSP blocks in the same
column. For the example in Figure 3, if we pack the three
systolic array columns into two DSP columns as in (b), the
HPWL (Half-Perimeter Wire-Length) can be reduced from 30
to 28, although the regularity is not retained.

3) When keeping the regularity is infeasible, even an effort to
approximate the regularity can be harmful for the same reason
as the previous item. Figure 4 demonstrates the placement
solutions for a CNN circuit with an 8 × 8 systolic array
from Vivado and our placement method. The Vivado solution
occupies 4 DSP columns and is closer to the square aspect ratio
of 1 : 1 compared to our approach. However, the solution of
our method reduces HPWL by 13%.

Without an effort to retain or approximate the regularity, how can
we leverage the regularity for better placement solutions? Here is
the answer: the regularity provides a nice problem structure that
facilitates efficient solution search for minimizing wirelength. An

PE PE PE

DSP Column

(a) HPWL = 30 (b) HPWL = 28

DSP
Block

Figure 3: Placement of 3× 3 systolic array.

(a) Vivado placement,
HPWL = 2.47× 104

(b) Our systolic array placement,
HPWL = 2.15× 104

Figure 4: Impact of systolic array placement. Red color indicates PEs
placed on DSPs, and light blue implies circuits placed on CLBs.

analogy is that it is much easier to find the maximum value in a
set of sorted numbers than in a set of unsorted numbers. Performing
evolutionary algorithms for the placement of a regular structure can
be likened to searching for the maximum value among sorted numbers
using enumeration. Indeed, the regularity of systolic arrays is heavily
utilized in our R-SAD algorithm and partition enumeration/pruning
technique.

IV. CNN CIRCUIT PLACEMENT METHODOLOGY

Usually, a DSP block can only accommodate the MAC unit of a
PE and the rest of the PE needs to be placed in CLB/RAMs nearby.
As such, we propose the following two-phase methodology for the
placement of systolic array-based CNN circuits.

• Phase 1: MAC array placement on DSPs by our algorithm.
• Phase 2: placement of the rest circuit, including global buffer,

control logic, and register files and intra-PE control of PEs, using
a conventional FPGA tool with the MAC array locations fixed.

One can treat the MACs as the backbone of a systolic array. By
considering only the backbone, Phase 1 can be focused on leveraging
the regularity without worrying other details, such as the connections
between register files and MACs. Once the locations of MACs are
fixed after Phase 1, the other wirelength, e.g., those between register
files and MACs, and the connections between PEs and the global
buffers, can be minimized by conventional tools in Phase 2, which
are the best techniques so far for handling irregular designs. Please
note that there is no direct wire connection between IO pins and PEs
as IO pins are mostly connected with the global buffer. As such, the
wirelength related to IO pins is also minmized in Phase 2.

V. MAC ARRAY PLACEMENT PROBLEM

Given an m× n array of MACs, each of which corresponds to a
PE in the given systolic array, and a set of DSP columns of a specific
FPGA architecture, our algorithm is to place the MACs onto DSP

slots, where DSP blocks are located, such that the total wirelength
among the MACs is minimized.

The m×n MAC array can be described by a grid graph G=(V,E),
where V={v1, v2, ..., v|V |} is a set of vertices, each corresponding
to a MAC, and E={e1, e2, ..., e|E|} is a set of edges indicating the
interconnect between the PEs corresponding to the MACs. Please
note |V |=m·n and |E|=m(n − 1) + n(m − 1). A vertex v ∈ V
can be alternatively represented by vi,j , where i and j are row and
column indices, respectively, and 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The edge connecting two vertices vi,j and vp,q can be represented
as e(vi,j , vp,q). The edges are restricted to neighboring vertices, i.e.,
there is an edge between vi,j and vp,q if and only if |i−p|+|j−q|=1.

The given DSP slots also form a k×l array and can be represented
by P = {p1,1, p2,1, ..., pk,1, p1,2, p2,2..., pk,l}, where pi,j indicates
a slot in the i-th row and j-th column. Each slot pi,j ∈ P has a
location specified by x(pi,j) = j·dH and y(pi,j) = i·dV , where
dH (dV) is the horizontal (vertical) distance between adjacent DSP
columns (rows), respectively. Normally, dH>>dV , k>>l and n>l.
MAP (MAC Array Placement) Problem: Given a grid graph
G = (V,E) representing a MAC array and an array of DSP slots
P satisfying |P | ≥ |V |, find the mapping f : V → P such that the
total half-perimeter wirelength (HPWL)

L(f) =
∑

e(vi,vj)∈E

|x(f(vi))− x(f(vj))|+ |y(f(vi))− y(f(vj))|

is minimized.

VI. MAC ARRAY PLACEMENT ALGORITHM

A. Overview

Our MAC array placement algorithm consists of three steps:

• Step 1: Partition candidate generation. The given MAC array is
partitioned into sub-arrays, and each sub-array is to be placed
onto a distinct DSP column. Multiple partitioning candidate
solutions are generated through enumeration.

• Step 2: Partition candidate pruning. By estimating the upper
and lower bound of wirelength, the candidates that would lead
to inferior placement solutions are pruned out.

• Step 3: Placement of remaining candidates. Placement is per-
formed for the remaining candidates using our R-SAD (Region-
wise Sweep in Alternating Directions) algorithm and the solution
with the minimum wirelength is selected.

B. Step 1: Partition Candidate Generation

In this step, the given MAC array is partitioned into a set of sub-
arrays, each of which will be placed onto a distinct DSP column. For
example, in Figure 5(b), the 5× 3 array is partitioned into two sub-
arrays, which are indicated by different colors and will be placed
onto two separate DSP columns. At this step, it is unclear which
partitioning would eventually lead to the solution with the minimum
HPWL. Thus, we enumerate multiple candidate solutions, including
the case of single sub-array like in Figure 5(a).

We preserve the MAC columns intact during the partitioning, i.e.,
the MACs in the same column are never partitioned into different
sub-arrays. There are two motivations behind this approach. First,
the dimension of a MAC array is usually close to square (m ≈
n) whereas the DSP arrays are generally tall and thin (k >> l).
Therefore, a MAC column height is less than that of a DSP column
(m < k) when |P | ≥ |V |. Therefore, we can usually pack one or
multiple MAC columns into a single DSP column and there is no
need to split a MAC column into different DSP columns. Second,

(a) 1 sub-array (b) 2 sub-arrays

(c) 3 sub-arrays (d) 5 sub-arrays

Figure 5: Enumerating different partitioning options.

with MAC columns intact, we can enumerate partitioning options in
an exhaustive manner with polynomial complexity.

Algorithm 1 Partition candidate generation

Input: MAC array columns {q1, q2, ..., qn}, # DSP columns l
Output: Set of partition candidates C

1: C ← ∅ ▷ Set of candidates
2: for i = 1 to l do ▷ i: # sub-arrays in a candidate
3: c← ∅ ▷ Set of sub-arrays as a candidate
4: w = ⌈n/i⌉ ▷ Max # columns per sub-array
5: j = 1 ▷ Index for sweeping MAC columns
6: while j ≤ n do
7: if j + w ≤ n then
8: s← {qj , qj+1, ..., qj+w−1} ▷ s is a sub-array
9: else

10: s← {qj , qj+1, ..., qn}
11: c← c ∪ {s}; j = j + w

12: C ← C ∪ {c}
13: return C

The pseudo-code of our partition candidate generation is provided
in Algorithm 1. The set of candidates is initialized in line 1. The
for-loop starting from line 2 enumerates candidates of different sizes
in terms of the number of sub-arrays. Figure 5 shows candidates with
sizes of 1, 2, 3 and 5. For each size, we obtain at most one candidate,
which is a set of sub-arrays initialized in line 3. Line 4 defines the
width or the maximum number of columns for the sub-arrays in a
candidate. For example, in Figure 5(c), w = ⌈5/3⌉ = 2. The while-
loop starting from line 6 sweeps the MAC columns from left to right,
and j is the MAC column index for this sweeping. In each iteration
(lines 7 and 8) except the last one, w MAC columns starting from
column j are taken to form a sub-array. In the last iteration (line 10),
the remaining MAC columns form a sub-array. These sub-arrays are
added into candidate c in line 11 and the generated candidate c is
added to C in line 12. Sometimes, no candidate is obtained for a
certain size i. For the example in Figure 5, when i=4, w=2 and the
algorithm ends up with the candidate with 3 sub-arrays as in (c).

Although the algorithm appears to be simple, it is carefully
designed to achieve the following important properties.

• Property 1. Each candidate has sub-arrays of at most two
different widths, one is w and the other is smaller than w.
Since the placement solutions of sub-arrays with the same
width are identical, the small number of sub-array widths avoids
the runtime of generating many different sub-array placement
solutions.

• Property 2. For each candidate, at most one sub-array has a
width smaller than w. For the example in Figure 5, we do not
allow partitioning {{q1, q2}, {q3}, {q4}, {q5}}, where w = 2.
This is why there is no 4-sub-array candidate in Figure 5. This
property is required by the candidate pruning in Step 2.

• Property 3. The sub-array with width smaller than w cannot be
sandwiched between two sub-arrays with size w. For example,
in Figure 5(c), the green sub-array is not in the middle between
two other sub-arrays. This property will help our R-SAD-based
placement to minimize wirelength.

These properties can be achieved by our simple algorithm partly due
to the regularity in the problem. This is a place where the regularity
is exploited for efficient solution search.

C. Step 2: Partition Candidate Pruning

In this step, some partition candidates are pruned out, and only
the remaining ones are forwarded to Step 3 for placement in order
to reduce computation runtime. The pruning is based on estimated
bounds on post-placement HPWL, and only those candidates leading
to inferior placement solutions are pruned. An upper bound and a
lower bound for placed HPWL is obtained for each candidate. The
pruning criterion is that a candidate is pruned out if its HPWL lower
bound is greater than the upper bound of any other candidate. As
such, the pruning process is fairly straightforward once the bounds
are established and the bound estimation is the key.

The bound estimate is composed by two parts: intra-column HPWL
and inter-column HPWL. Here, the column means DSP columns,
each of which accommodates one sub-array of a partition candidate.
According to our R-SAD placement in Step 3 (Section VI-D), the
estimated lower bound for intra-column HPWL for placing an
m× h sub-array is given by

LI = min
g

[−2

3
g3+2hg2+(

2

3
−h2−h)g+mh2+mh−m−h] (1)

where g is an integer in [1, min(m,h)
2

]. The value of g for the minimum
on the RHS can be found through linear search. The derivation of
this estimate is given in Section VI-D. This bound is based on the
observation that R-SAD always achieves the same or better solutions
than an ILP solver, but does not have theoretic guarantee.

Figure 6: Placement for HPWL upper-bound, lower-bound estimate.

1) HPWL Lower Bound:

• Intra-column. The intra-column part of the lower bound is given
by Equation (1). Please note the LI for the rightmost sub-array
or DSP column can be different from the other sub-arrays (DSP
columns) as shown in Figure 6(c). In the intra-column lower
bound estimation, we assume that all MACs of the same DSP
column are placed in a contiguous manner without any vacant
slots among them. Evidently, placing MACs with vacant slots
in the middle increases the intra-column HPWL.

• Inter-column. The inter-column wires include horizontal and
vertical segments, as shown by the red lines in Figure 6. In the
lower bound estimate, the vertical segments are ignored. The
horizontal inter-column wirelength is the product between dH ,
the horizontal distance between two neighboring DSP columns,
and the number of inter-column nets. In Figure 6(c), this value
is 6dH .

2) HPWL Upper Bound: Please note this is an upper bound for the
minimum HPWL placement solution as the upper bound for arbitrary
solutions is infinite. The upper bound estimate starts with a dummy
MAC padding process. If the rightmost sub-array or DSP column has
less MAC columns than the other sub-arrays, dummy MAC columns
are padded into this sub-array so that all DSP columns have the same
number of MACs. The padding is illustrated in Figure 6(b), where
the white boxes with dotted boundaries indicate dummy MACs. This
is where the second property of Algorithm 1 is utilized. Then, the
bound estimate assumes placement including the dummy MACs.

• Intra-column. The intra-column part of the upper bound is also
given by Equation (1). However, the resulting HPWL is greater
than or equal to the lower bound due to the padding of dummy
MACs.

• Inter-column. When all DSP columns have the same number of
MACs, including dummy MACs, our R-SAD-based placement
can guarantee that only horizontal wires are needed between
two neighboring columns. This is demonstrated in Figure 6(d).
Therefore, the inter-column part of the upper bound is equal to
the inter-column part of the lower bound estimate.

D. Step 3: Placement of Partition Candidates Using R-SAD

A candidate is a MAC array that is partitioned into a set of sub-
arrays, each of which is to be placed onto a DSP column. The
remaining partition candidates after the pruning in Step 2 are placed,
and the minimum wirelength one among the candidates is selected to
be the final solution. The key part of this step is the R-SAD (Region-
wise Sweep in Alternating Directions) algorithm for placing a sub-
array on a single DSP column to minimize intra-column wirelength
in linear time. Due to the regularity of MAC arrays, R-SAD can
be applied for all sub-arrays in a way such that the inter-column
wirelength is also minimized.

Placing a sub-array onto a DSP column to minimize intra-column
wirelength is very similar to the traditional linear placement prob-
lem [12], which is known to be NP-hard. However, a sub-array has a
very regular topology. We exploit the regularity to derive some useful
constraints and obtain the R-SAD algorithm.

1) Constraints Used in R-SAD: Due to the regularity, there could
be redundant solutions with the same wirelength. We enforce the
following constraints to reduce solution space without missing the
optimal solution.

Constraint 1: The MAC v1,1 in the lower-left corner of a sub-array
is always placed at the lowest slot of the DSP column.

Constraint 2 Order Consistency (OC): If MAC u is to the lower-
left of MAC v in the sub-array, then MAC u must be placed in a
lower slot than MAC v in the DSP column.

(iu ≤ iv) ∧ (ju ≤ jv) =⇒ y(f(u)) ≤ y(f(v)),

where iu, iv , ju and jv denote the row and column indices of MACs
u and v, respectively. This constraint effectively reduces the solution
space and simplifies the wirelength calculation in Section VI-D2.

Figure 7: Placement of an 8 x 8 MAC sub-array. The number in each
MAC denotes its y-coordinate after placement. Each color denotes a
region.

2) R-SAD (Region-wise Sweep in Alternating Directions): In
order to place an m × h sub-array onto a DSP column with the
minimum wirelength, a naı̈ve approach is row-by-row sweep. More
specifically, the first row at the bottom of a sub-array is first placed
at the bottom of the DSP column, then the 2nd row is placed right
above, and so on. For example, row-by-row sweep for the 3×2 sub-
arrays in Figure 6(a) leads to the placement in DSP columns in 6(c),
which has the minimum wirelength. However, such a naı̈ve approach
results in inferior solutions when the sub-array size becomes large. In
Figure 7, where the numbers in squares indicate y-coordinates in the
DSP column, the row-by-row sweep solution has significantly greater
HPWL than R-SAD.

Lemma 1. If each MAC vi,j in an m× h sub-array is placed at y-
coordinate y(i,j) in the DSP column following the order consistency
constraint, the total HPWL is given by

h∑
j=1

(y(m,j) − y(1,j)) +

m∑
i=1

(y(i,h) − y(i,1)) (2)

Proof. Omitted due to space limit.

Lemma 1 shows that with the OC (Order Consistency) constraint,
only the placement of the MACs in the bottom/top row (y(1,j), y(m,j))
and left/right columns (y(i,1), y(i,n)) contributes to the total HPWL.
Minimizing HPWL implies minimizing the y coordinates of the
MACs on the top row and right column, and maximizing the y
coordinates of the MACs on the bottom row and left column. Please
note that the MACs at the four corners don’t affect HPWL since
y(1,1) = 1 and y(m,h) = m·h due to Constraints 1 and 2, and y(m,1)

and y(1,h) are canceled out in Equation (2).
R-SAD divides the given sub-array into 7 regions, and each region

is placed independently. The region division and the placement order
of the 7 regions are shown in Figure 7(a). The dimensions of the re-
gions depend on an integer parameter g≤min(m,h)/2. The value of
g is decided through a linear search according to corresponding place-
ment HPWL, which can be calculated using Equation (1) without
performing the actual placement. The row-by-row sweep method in
Figure 7(b) is a special case of R-SAD for g=1.

Figure 8: R-SAD placement of the MACs in the lower-left and upper-
right regions. The numbers indicate relative placement order in y-
direction.

Lower-left region: The R-SAD placement of the lower-left region,
a g×g square, is illustrated in Figure 8(a), where the numbers indicate
the order along y-direction in the DSP column after placement, e.g.,
the MAC with 9 is right above the MAC with 8 in the DSP column.
Visually, the order follows sweeps alternating between horizontal and
vertical directions. This order has three properties.

1) The R-SAD order conforms to the order consistency constraint.
2) For any sub-square starting from the lower-left corner, the

upper-right corner MAC always has the maximum order index.
For the lower-left 2 × 2 sub-square in Figure 8(a), its upper-
right corner MAC has index 4, which is the maximum among
the 4 MACs in this sub-square. Such index is the minimum
that permits an order within the sub-square satisfying the order
consistency constraint.

3) This order allows an analytical form expression for assigning
the order index to each MAC.

For a MAC in the i-th row and j-th column of the lower-left region,
its order index is given by

Oll(i, j) =

{
i2 − i+ j if i ≥ j

(j − 1)2 + i if i < j
(3)

For the diagonal MACs vi,i, Equation (3) is reduced to Oll(i, i) = i2,
which is the size of its lower-left sub-square. The diagonal MACs
serve as anchors for deriving the order indices of the other MACs.
For a MAC vi,j above the diagonal (i > j), MAC vi,i serves as the
anchor and the index difference from the anchor equals the horizontal
distance from the anchor. Therefore, Oll(i, j) = Oll(i, i)− (i−j) =
i2 − i+ j. For MACs below the diagonal (i < j), vj−1,j−1 is used
as the anchor. The index difference between vi,j and vj−1,j−1 is i
and Oll(i, j) = Oll(j − 1, j − 1) + i = (j − 1)2 + i.

Figure 9: R-SAD placement of the MACs in the lower-right and
upper-left regions. The numbers indicate relative placement order in
y-direction.

Lower-right region: The R-SAD placement for the lower-right
region is illustrated in Figure 9(b) and the order index is given by

Olr(i, j) =

{
− 1

2
j2 + (g + 3

2
)j − g + i− 1, i ≤ g − j + 1

1
2
g(g − 1) + 1

2
i(i− 1) + j, i > g − j + 1

(4)

Please note the row/column indices i/j and order index Olr here are
with respect to the region instead of the sub-array. For the example in
Figure 7(a), the absolute placement order of the lower-right (purple)
region ranges from 16 to 24, and the MAC placed at y = 16 has
relative row/column indices (1, 1).

Upper-left region: The order index is given by

Oul(i, j) =

{
− 1

2
i2 + (g + 3

2
)i− g + j − 1, i ≤ g − j + 1

1
2
g(g − 1) + 1

2
j(j − 1) + i, i > g − j + 1

(5)

Upper-right region: The order index is given by

Our(i, j) =

{
2g · j − j2 + i− g if i ≥ j

2g · i− i2 + i+ j − 2g if i < j
(6)

Lower-middle and upper-middle regions: The MACs in the
lower-middle and upper-middle regions are placement in column-by-
column sweeps. The order index is given by

Olm(i, j) = Oum(i, j) = (j − 1)g + i (7)

Central region: The MACs in the (m− 2g)×g central region are
placed in row-by-row sweeps with the order index given by

Octr(i, j) = (i− 1)h+ j (8)

From Figure 8 and 9 one can see that the R-SAD placement in the
four corner regions are actually in the same pattern and is symmetric
to the center of the MAC sub-array.

Lemma 2. The intra-column HPWL obtained from R-SAD placement
of a m× h sub-array is given by Equation (1).

Proof. Equation (1) is derived by integrating Equations (3) - (8) and
the details are omitted due to space limit.

Lemma 3. The computational complexity of R-SAD is O(1) for a
2× 2 or larger sub-array (m,h ≥ 2).

Proof. The RHS of Equation 1 is a third-degree polynomial function
of g. The critical points of it can be calculated by setting the derivative
to zero:

g1,2 = h±
√

1

2
(h− 1

2
)2 +

5

24
, (9)

where g1 reaches local minimum and g2 reaches local maximum. It
can also be proved that 0 < g1 < h

2
< g2 for h ≥ 2. Since g is an

integer in [1, min(m,h)
2

], the local minimum becomes the minimum
in [1, min(m,h)

2
]. Therefore, the best g with minimum HPWL can be

found in {⌈g1⌉, ⌊g1⌋, ⌊m2 ⌋}.

3) Partition Candidate Placement Using R-SAD: A partition can-
didate consists of s sub-arrays, each of which is placed on a single
DSP column using R-SAD. According to Algorithm 1, the first s−1
sub-arrays always have the same width (number of MAC columns)
while the last one may the same or smaller width. For sub-arrays of
the same width, we index them from left to right according to the
given MAC array order. R-SAD is performed for the first sub-array,
and the solution is duplicated for all sub-arrays with odd-numbered
indices. Meanwhile, the solution of the first sub-array is mirrored and
then applied to all sub-arrays with even-numbered indices. By doing
so, the solutions of every two neighboring sub-arrays are mirrored

Figure 10: R-SAD placement of an 8 x 12 MAC array partitioned to
four 8 x 3 sub-arrays. The numbers indicate y-coordinates in DSP
columns. The red lines indicate inter-column wires.

from each other. In Figure 10, the placement of the second sub-array
is mirrored from the placement of the first sub-array. One can see
that two MACs with inter-column connection always have the same
y-coordinate (horizontally aligned) in their DSP columns. As such,
there is no vertical wire for inter-column connections. This property
not only minimizes inter-column wirelength, but also facilitates the
HPWL bound estimation in Step 2 (Section VI-C). If the right-most
sub-array has a smaller width, dummy MAC columns are padded to
it in the same way in HPWL upper bound calculation.

VII. EXPERIMENTS

A. Testcases and Experiment Setup
Table II: Characteristics of testcases.

Designs PE Array Size #Cells #DSPs Clock
Period (ns)

IS8 8 x 8 4.4K 64 4
OS8 8 x 8 5.5K 64 4
IS16 16 x 16 16K 256 5
OS16 16 x 16 20K 256 5
IS32 32 x 20 35K 640 6
OS32 32 x 20 40K 640 6

Six systolic array-based CNN circuits are designed according
to [3]. The characteristics of these testcases are summarized in
Table II. These cases cover both Input Stationary (IS) and Output
Stationary (OS) designs. They are placed onto two different FPGA
architectures, FPGA1 and FPGA2. FPGA1 is adopted from the ISPD
2016 placement contest [13] and has 678 DSPs distributed in four
columns. FPGA2 is a larger architecture with 1800 DSPs distributed
in five columns. The clock period constraints are generated in a way
such that the resulting worst slacks are slightly less than zero when
using Vivado placement in timing driven mode. The experiments are
performed on a computer with a 3.80 GHz CPU and 32 GB RAM.

In the experiment, we compare the following methods.

• Our R-SAD for MAC array placement. It is combined with other
placers as R-SAD+Vivado, R-SAD+elfPlace and R-SAD+QP to
generate the placement of entire CNN circuits.

• Vivado, an industrial FPGA tool [14]. It is used to place entire
CNN circuits or the non-MAC parts of circuits. We run Vivado
Design Suite 2018.3 in both timing-driven mode and non-timing-
driven mode, while the other parameters being in default values.

• QP, a quadratic placer based on UTPlaceF [15]. It is used
to place entire CNN circuits, only place MAC arrays in
QP+Vivado, or only place the non-MAC parts in R-SAD+QP.

• elfPlace [10], a state-of-the-art placer. It is based on the same
algorithm as DreamPlaceFPGA [11] but runs on CPU. It is used
to place entire CNN circuits, only place MAC arrays in elf-
Place+Vivado, or place the non-MAC parts in R-SAD+elfPlace.

• EA, the evolutionary algorithm using NSGA-II [16] package as
in RapidLayout [7] for MAC array placement. We use the same
genotype and parameter settings as in [7]. MAC array HPWL

Table I: HPWL (×105) and placement runtime (seconds) with and without R-SAD-based MAC array placement.

Device Design Vivado R-SAD + Vivado elfPlace R-SAD + elfPlace QP R-SAD + QP
HPWL CPU HPWL CPU HPWL CPU HPWL CPU HPWL CPU HPWL CPU

FPGA1

IS8 0.25 47 0.19 45 0.37 146 0.20 141 0.25 9 0.21 8
OS8 0.25 61 0.21 44 0.29 129 0.28 115 0.30 11 0.25 11
IS16 1.24 101 0.92 104 0.82 124 0.75 116 1.36 28 0.88 25
OS16 1.19 110 0.90 102 0.91 171 0.81 113 1.71 39 0.97 38
IS32 3.91 207 2.36 219 2.73 194 1.94 184 4.94 62 2.15 58
OS32 3.43 199 2.76 190 2.73 128 2.14 123 4.61 99 3.48 89
Norm. 1.00 1.00 0.71 0.97 1.00 1.00 0.78 0.89 1.00 1.00 0.60 0.92

FPGA2

IS8 0.26 59 0.23 76 0.21 142 0.20 237 0.25 9 0.21 12
OS8 0.25 61 0.25 75 0.21 135 0.19 204 0.28 12 0.24 15
IS16 1.08 120 0.90 102 2.71 255 0.69 182 1.21 42 0.85 37
OS16 1.18 116 0.89 111 1.72 229 0.78 237 1.49 36 0.93 52
IS32 2.22 216 1.66 202 3.26 297 1.89 286 3.51 57 2.43 60
OS32 2.75 222 2.26 200 2.77 305 1.89 256 4.39 76 1.96 72
Norm. 1.00 1.00 0.80 0.96 1.00 1.00 0.52 1.03 1.00 1.00 0.60 1.07

Figure 11: Vivado place & route results with different MAC array placements. Vivado runs in timing-driven and non-timing-driven modes.

serves as the objective function. It is performed with Vivado in
EA+Vivado to generate placement for entire circuits as in [7].

When QP and elfPlace are employed for only MAC array place-
ment, we run their global placement for the entire circuit. Then,
the MAC locations in the global placement results are retained,
and the rest circuits are placed by Vivado. The description of the
greedy floorplan constraint approach in [4] lacks sufficient details
for replicating its implementation.

B. Main Results

Table I lists the HPWL and placement runtime of Vivado (non-
timing-driven), elfPlace, and QP with and without our R-SAD-based

MAC array placement. Metrics are normalized separately for each
placer to demonstrate the improvement achieved by R-SAD. It shows
that R-SAD reduces the HPWL of Vivado placement by 20% and
29% on two FPGAs, and also decreases total runtime. For elfPlace
and QP, applying R-SAD reduces HPWL by 22%-48%, with similar
placement runtime. The runtime of R-SAD alone is always less than
70 milliseconds for every case, which is negligible compared to the
total placement runtime.

In Figure 11, we compare our R-SAD+Vivado approach with other
methods, most of which have MAC array placed by EA, elfPlace and
QP. The Vivado placement and routing are performed in both timing-

driven and non-timing-driven modes. The results are evaluated by
HPWL, routing resource utilization, placement runtime (MAC array
+ non-MAC parts), worst negative slack, and maximum frequency
of the routed designs. One can see that the solutions from EA,
which is similar to RapidLayout [7], are generally not competitive.
Our R-SAD+Vivado approach always achieves the best average
results on all these metrics. Besides the 23% - 25% reduction on
HPWL compared with Vivado, our approach usually reduces routing
resource utilization by 19% or more. This implies that our approach
helps routability significantly. Combined with R-SAD, the placement
runtime of Vivado reduces 3% - 10%. In the timing-driven mode,
our approach obtains the least worst negative slack and the maximum
frequency on average.

C. Comparison with ILP and QAP Solver

Figure 12: HPWL of an 8x8 MAC array placed by R-SAD, ILP, and
QAP solvers with different dH (distance between DPS columns).

The MAC array placement problem can be formulated as an ILP
problem or a QAP (Quadratic Assignment Problem) [17]. We use
ILP solver Gurobi [18] and QAP solver with the FAQ method [19]
from SciPy [20] library to place an 8× 8 MAC array with different
distances between two neighboring FPGA columns. The results are
shown in Figure 12. For all these cases, the ILP solver spends 1 hour
runtime without finding the optimal solution, while the QAP solver
finishes in 30–60 seconds without guaranteeing optimality either. One
can see that R-SAD always achieves shorter HPWL than both ILP
and QAP. Moreover, R-SAD is 50K× faster than the ILP solver.

D. Effect of the Order Consistency Constraint

Figure 13: HPWL of MAC sub-arrays placed by ILP solver with and
without the order consistency constraint.

Figure 14: HPWL of 16× 16 MAC sub-array placed by ILP solver
with and without the order consistency constraint.

To examine the effect of the OC (Order Consistency) constraint
proposed in Section VI-D1, we use the ILP solver to place MAC

Figure 15: Number of candidates before and after pruning (Step 2).
sub-arrays with and without the OC constraint. The runtime of the
ILP solver is set to be 24 hours. Figure 13 shows the HPWL of MAC
sub-arrays of different sizes after placement. One can see that the OC
constraints facilitate significantly optimizing HPWL for large cases
and do not affect the results for small cases. Figure 14 shows the
HPWL changes over the runtime for a 16×16 sub-array. With the
OC constraints, the solver converges much faster, while the solution
is much worse without the constraints.

E. Effect of Partition Candidate Pruning

To show the effectiveness of Step 2 (partition candidate pruning),
we list the number of partition candidates before and after pruning
for the two FPGA architectures in Figure 15. On average, 55% of
partition candidates are pruned out in Step 2, hence about a half of the
downstream computation workload is reduced. Please note that Step 1
(partition candidate generation) implicitly prunes out candidates that
do not satisfy the properties mentioned in Section VI-B. Combining
Steps 1 and 2, the percentage of pruned candidates is even higher.

F. Best Value for g in R-SAD

Figure 16 shows HPWL versus g for placing an m×h sub-array
onto one DSP column by R-SAD. The curves correspond to the RHS
of Equation (1). It can be seen that HPWL is convex in the search
range g ∈ [1, min(m,h)

2
] (solid line). Therefore, the best g for the

minimum HPWL can be determined in constant time.

Figure 16: HPWL of R-SAD placement v.s. g for different sub-arrays.

VIII. CONCLUSIONS

In this paper, we have presented an algorithmic approach for
systolic array placement on FPGAs. In particular, we propose a
Region-wise Sweep in Alternating Direction (R-SAD) algorithm to
place MAC sub-arrays on a single DSP column with empirically
minimum intra-column wirelength. A partition enumeration and
pruning framework is developed to utilize R-SAD for 2D MAC array
placement. With our framework being integrated with general FPGA
placement tools, we demonstrate 23%-25% reduced HPWL as well
as improvement in routing resource utilization, accelerated placement
runtime, and timing performance.

REFERENCES

[1] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” Sparse
Matrix Proceedings, pp. 256–282, 1979.

[2] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. S.
Bajwa, S. Bates, S. Bhatia, N. J. Boden, A. Borchers, R. Boyle,
P. luc Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. B. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. A. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Ma-
hony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon, “In-datacenter performance analysis of a tensor processing unit,”
International Symposium on Computer Architecture, pp. 1–12, 2017.

[3] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on FPGAs,” Design Automation Conference,
pp. 1–6, 2017.

[4] J. Zhang, W. Zhang, G. Luo, X. Wei, Y. Liang, and J. Cong, “Frequency
improvement of systolic array-based cnns on FPGAs,” International
Symposium on Circuits and Systems, pp. 1–4, 2019.

[5] D. Fang, B. Zhang, H. Hu, W. Li, B. Yuan, and J. Hu, “Global placement
exploiting soft 2D regularity,” International Symposium on Physical
Design, p. 203–210, 2022.

[6] H. Kong, L. Feng, C. Deng, B. Yuan, and J. Hu, “How much does
regularity help FPGA placement?” International Conference on Field-
Programmable Technology, pp. 76–84, 2020.

[7] N. Zhang, X. Chen, and N. Kapre, “RapidLayout: Fast hard block
placement of FPGA-optimized systolic arrays using evolutionary al-
gorithms,” International Conference on Field-Programmable Logic and
Applications, pp. 145–152, 2020.

[8] W. Li, Y. Lin, M. Li, S. Dhar, and D. Z. Pan, “UTPlaceF 2.0: A
high-performance clock-aware FPGA placement engine,” Transactions
on Design Automation of Electronic Systems, pp. 1 – 23, 2018.

[9] G. Chen, C.-W. Pui, W.-K. Chow, K.-C. Lam, J. Kuang, E. F. Y. Young,
and B. Yu, “RippleFPGA: Routability-driven simultaneous packing and
placement for modern FPGAs,” Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 2022–2035, 2018.

[10] Y. Meng, W. Li, Y. Lin, and D. Z. Pan, “elfPlace: Electrostatics-
based placement for large-scale heterogeneous FPGAs,” Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp. 155–
168, 2022.

[11] R. S. Rajarathnam, M. B. Alawieh, Z. Jiang, M. A. Iyer, and D. Z.
Pan, “DREAMPlaceFPGA: An open-source analytical placer for large
scale heterogeneous FPGAs using deep-learning toolkit,” Asia and South
Pacific Design Automation Conference, pp. 300–306, 2022.

[12] Y. G. Saab, “An improved linear placement algorithm using node com-
paction,” Transactions on computer-aided design of integrated circuits
and systems, pp. 952–958, 1996.

[13] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal,
“Routability-driven FPGA placement contest,” International Symposium
on Physical Design, 2016.

[14] Tom Feist, “White paper: Vivado design suite,” 2023.
[Online]. Available: https://docs.xilinx.com/v/u/en-US/wp416-Vivado-
Design-Suite

[15] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 869–
882, 2018.

[16] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” Transactions on Evolutionary
Computation, pp. 182–197, 2002.

[17] T. C. Koopmans and M. J. Beckmann, “Assignment problems and the
location of economic activities,” Econometrica, p. 53, 1957.

[18] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2023.
[Online]. Available: https://www.gurobi.com

[19] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer,
E. T. Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe, “Fast
approximate quadratic programming for graph matching,” PLOS ONE,
2015.

[20] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online]. Available: http://www.scipy.org/

